

CERTIFICATE OF COMPLETION

This is to certify that

Sir C.R. Reddy College of Pharmaceutical Sciences

has successfully completed

CARBON FOOTPRINT & ENERGY AUDIT

The study was completed by Rekhapalli Environmental Solutions & Technologies Pvt Ltd

Dr Rekhapalli Srinivasa Rao

Green, Eco & Energy Lead Auditor Certified ISO-14001 Auditor

Issued by

Rekhapalli Environmental Solutions & Technologies Pvt Ltd

Sir C.R. Reddy College of Pharmaceutical Sciences Santhi Nagar, GNT Road, Eluru, Andhra Pradesh 534007

Carbon Footprint and Energy Audit

PRINCIPAL
Sir C.R.Peddy College of
Pharmacourical Science
El Unitedition
2 | Page

CONTENTS

04 Acknowledgement

05 Executive Summary

07 Carbon footprint & Opportunities

11 Energy efficiency

17 Conclusion

PRINCIPAL Sir C.R.Reddy Callege of Pharmaceutical Sciences ELURU-534007

Acknowledgements

REST Pvt Ltd

Dr Rekhapalli Srinivasa RaoGreen, Eco & Energy Lead Auditor
Certified ISO-14001 Auditor

22 Dec 2021

Carbon Footprint & Energy Audit

The REST Pvt Ltd acknowledges with thanks the cooperation extended to our team for completing the study at Sir C.R Reddy College of Pharmaceutical Sciences (CRRCPS).

The interactions and deliberations with CRRCPS team were exemplary and the whole exercise was thoroughly a rewarding experience for us. We deeply appreciate the interest, enthusiasm, and commitment of CRRCPS team towards environmental sustainability.

We are sure that the recommendations presented in this report will be implemented and the CRRCPS team will be further improve their environmental performance.

Kind regards

Your sincerely

Dr Rekhapalli Srinivasa Rao

Green, Eco & Energy Lead Auditor Certified ISO-14001 Auditor REST Pvt Ltd

ELURU 534 007 C5

Sir C.R.Reddy Callege of 4 | Page Pharmaceutical Sciences 4 | Page

Executive Summary

The growth of countries across the world is leading to increased consumption of natural resources. There is an urgent need to establish environmental sustainability in every activity we do. In a modern economy, environmental sustainability will play a critical role in the very existence of an organization.

An educational institution is no different. Built environment, especially an educational institution, has a considerable footprint on the environment. Impact on the environment due to energy consumption, water usage and waste generation in an educational institute is prominent. Therefore, there is an imminent need to reduce the overall environmental footprint of the institution.

As an Institution of higher learning, Sir C.R Reddy College of Pharmaceutical Sciences (CRRCPS) firmly believes that there is an urgent need to address the environmental challenges and improve their environmental footprint.

True to its belief, CRRCPS has installed solar panels. And almost 50% transforming conventional bulbs & fixtures into non-conventional energy LEDs. REST Pvt Ltd team congratulates CRRCPS team for their efforts.

Keeping CRRCPS work in energy efficiency, we recommend the following to be taken by the competent team at CRRCPS:

Work towards achieving carbon neutrality: NDC emphasizes creating an additional carbon sink of 2.5 to 3 billion tonnes of CO² equivalent through additional forest and tree cover by 2030. CRRCPS's net carbon emission for the year 2020-21 is 80 MT CO²e. CRRCPS should focus on energy efficiency, renewable energy, and carbon sequestration as tools that will enable them to offset the present carbon emissions and achieve carbon neutrality.

Installation of solar rooftop: Renewable energy plays a very important role in improving the environmental footprint of an organization. By increasing the share of renewable energy in CRRCPS's energy portfolio, the overall carbon footprint of the college can be reduced. The roof area available at CRRCPS is around 13613.74sq.ft. For the available area, already occupied with 34.5kWp of solar PV Installed. As an initial step, CRRCPS could look at installing 100kWp of solar PV which can generate 1,62,000 units per year. Still the renewable share will also reduce the 35 MT CO²e. For the current assessment year power consumption is high compared to previous year. Still another half of roof top can be utilized for solar power to expand.

Increase the operating power factor: Presently, based on the energy bills, it is understood that the institution maintains a power factor of 0.65. Since the institution pays electricity bills for the KVAH consumed, the lower the power factor, higher is the energy bill for the same KWH consumption. It is recommended to install capacitor banks to improve the power factor and save energy bill. CRRCPS can save up to Rs. 20,000 per month.

Sol Pharmaceure Sol Pharmaceure Sol ELURU 534 001

PRINCIPAL
Sir C.R.Reddy Cellege of
Pharmaceutical Sciences
ELURU-534007

Improve energy efficiency of the college: It is recommended to adopt latest energy efficient technologies for reducing energy consumption in fans, lighting, and air conditioners. We recommend the following projects to be implemented at the earliest:

- Replace conventional 60W ceiling fans with energy efficient BLDC fans of 30W
- Install air conditioners energy savers to save energy in split air conditioners
- Replace all conventional tube lights with LED lamps

PRINCIPAL,
Sir C.R.Reddy College of
Charmaceutical Sciences
ELURU-534007 6 | Page

Carbon Footprint and Energy Audit

Sir C.R Reddy College of Pharmaceutical Sciences (CRRCPS) and REST Pvt Ltd are working together

to identify opportunities for improvement in energy efficiency and carbon reduction. This report

highlights all the potential proposals for improvement through the audit and analysis of the data

provided by CRRCPS for lighting, air conditioning, ceiling fans, and biogas potential.

The report also details the carbon emissions from college operations. For carbon emissions, scope

1 and scope 2 emissions are calculated from the data submitted by CRRCPS. The report emphasizes

the GHG emission reduction potential possible through a reduction in power consumption.

Effect of pandemic and online classes on energy consumption and carbon footprint:

The year 2020-21 was affected by the pandemic and because of the pandemic, most of the classes

were shifted online. There has been a steady in the consumption of energy in the year 2020 January

to until March 2021. CRRCPS's carbon footprint for the year 2020-21 will be smaller compared to

the previous year.

Submission of Documents

"Carbon footprint and energy audit at CRRCPS was carried out with the help of data submitted by

CRRCPS team. CRRCPS team was responsible for collecting all the necessary data and submitting

the relevant documents to REST Pvt Ltd for the study.

Note

Carbon footprint and energy audit are based on the data provided by CRRCPS team and discussions

the REST Pvt Ltd team had with CRRCPS team. The scope of the study does not include the exclusive

verification of various regulatory requirements related to environmental sustainability.

REST Pvt Ltd has the right to recall the study if it finds (a) major violation in meeting the

environmental regulatory requirements by the location and (b) occurrence of major accidents,

leading to significant damage to ecology and environment.

PRINCIPAL
Sir C.R.Reddy College of 7 | Pag
Pharmaceutical Sciences 7 | Pag

Opportunities for improvement

As a part of the overall environmental improvement study at CRRCPS, carbon footprint calculations were also carried out. The objective of calculating the carbon footprint of the campus is find the present level of emissions from campus operation and what initiatives that the CRRCPS can take to offset the emissions. By offsetting the emissions, the college can become carbon neutral in the future by adopting energy efficient processes, increase in renewable energy share and tree plantation.

Carbon footprint calculations:

To help delineate direct and indirect emission sources, improve transparency, and provide utility for different types of organizations and different types of climate policies and business goals, three "scopes" (scope 1, scope 2, and scope 3) are defined for GHG accounting and reporting purposes.

For calculating carbon footprint of the campus, Scope 1 & Scope 2 emissions are being considered. Since day scholars use college provided transportation and hostelers stay in campus, Scope 1 and Scope 2 are the highest contributor to overall emissions. For this reason, Scope 3 is not being calculated.

Scope 1: Direct GHG Emissions

Direct GHG emissions occur from sources that are owned or controlled by the company, for example, emissions from combustion in owned or controlled DG sets, canteen, vehicles, etc.; emissions from chemical production in owned or controlled process equipment, Direct CO2 emissions from the combustion of biomass shall not be included in scope 1 but reported separately.

CRRCPS Scope 1 emissions for 2021-22:

Sources of Scope 1 emissions in CRRCPS:

- 1) Diesel used for college-owned transportation.
- Diesel consumption for the generator for the assessment year.

3) LPG used for canteen: 0

Scope 2: Electricity Indirect GHG Emissions

Scope 2 accounts for GHG emissions from the generation of purchased electricity consumed by a Institution. Purchased electricity is defined as electricity that is purchased or otherwise brought into the organizational boundary of the company. Scope 2 emissions physically occur at the facility

where electricity is generated.

Develop a roadmap to increase contribution of renewable energy in the overall energy consumption

To have a continued focus on increasing renewable energy utilization to 100% which will also lead to reduction in GHG emissions, it is suggested to develop a detailed roadmap on RE utilization. The road map should broadly feature the following aspects -

- Renewable energy potential of CRRCPS and the maximum offset that can be achieved at CRRCPS
- Percentage substitution with renewable energy that CRRCPS wants to achieve in a specified time frame

Key tasks that need to be executed to achieve the renewable energy target

- Specific financial break up for each of the projects highlighting the amount required, available and the utilization status as on date
- A regular review mechanism to ensure progress along the lines of the roadmap should be framed
- The roadmap should also highlight important milestones/key tasks, anticipated bottle CRRCPS
 & proposed

Renewable energy roadmap should be used as a base to frame GHG emissions reduction target

It is suggested to use the developed renewable energy roadmap to correlate the GHG reduction that each of the renewable energy project will achieve. This approach will provide a base to set targets for reduction in GHG emissions. The action plan for renewable energy will shoulder the action plan for GHG emissions reduction and work towards achieving carbon neutrality.

Explore the option of other onsite and offsite renewable energy projects

The renewable energy field has been witnessing many private investors due its increased market demand and attractive policies in many states. There are Renewable Energy Independent Power Producers (RE IPPs) who have installed RE based power plants like wind, small hydro and solar PV. GOC can consider having a long-term power purchase agreement with these RE IPPs in purchasing fixed quantity of power for a period of 5 to 10 years.

"Evolve a system to monitor the implementation of various GHG mitigation opportunities CRRCPS has an action plan to reduce its GHG emissions. CRRCPS should also evolve a system to monitor the implementation of various GHG mitigation opportunities. It is recommended to use a Gantt chart to mark out the action plan for the activities and track its implementation. Gantt chart will serve as an excellent way to instantly monitor and comprehend all different tasks in one place which would ease tracking of implementation.

Calculation for Installation of 25 kWp of Solar PV in CRRCPS campus

Renewable energy is one of the important steps to be taken up by the college to reduce their overall carbon footprint. Based on the details provided by CRRCPS team, based on the total rooftop area availability of 13613.74sq.ft area, 34.5 kWp of solar PV was installed already. Still there is a

Appart 534 007 Co

9 | Page

Sir C.Ř.Reddy College of Pharmaceutical Sciences ELURU-534007 scope to expand the roof top solar PV capacity. However, for this report calculation, only 25 kWp capacity is considered.

A renewable energy capacity of 25 kW of solar panel may be installed can generate 40,500 units of electricity per year. Additionally, 25 kWp of solar rooftop can offset 33 MT CO2e per annum. RESCO model for solar rooftop installation:

A Renewable Energy Service Company (RESCO) is an ESCO Energy service company which provides energy to the consumers from renewable energy sources. RESCO or BOOT model is about pay as Ju consume the electricity.

- Solar Power Plant is owned by the RESCO or Energy Company
- Customer must sign a Power purchase Agreement (PPA) with actual investor at mutually agreed tariff and tenure
- · Customer only pays for electricity consumed
- RESCO developer is responsible for its annual operations & maintenance (O&M)
- The RESCO gets the benefit by selling the surplus power generated to the DISCOM

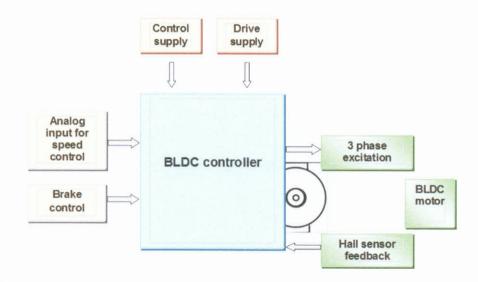
Source: www.bluebirdsolar.com

ELURU 534 007 SS

PRINCIPAL Sir C.R.Reddy College of Pharmaceutical Sciences ELURU-534007

Energy Efficiency

Annual energy consumption of CRRCPS campus is moderately high. There are major blocks in the campus which consumes energy for their operation. Major energy consumers are:


- 1. Fans
- 2. Air conditioners
- 3. Replace conventional tube lights with LED lamps

Replace Conventional Ceiling Fans with Energy Efficient BLDC Fans

During the Energy Audit at CRRCPS, a detailed study was carried out to identify the potential for replacing the existing ceiling fans with BLDC super fans. There are 250 fans operating in CRRCPS campus.

Instead of conventional ceiling fans, latest technology BLDC fans which consume only 30W can be installed in the newly constructed building. A brushless DC (BLDC) motor is a synchronous electric motor powered by direct-current (DC) electricity and having an electronic commutation system, rather than a mechanical commutator and brushes. A BLDC motor has an external armature called the stator, and an internal armature called the rotor.

The rotor can usually be a permanent magnet. Typical BLDC motor-based ceiling fan has much Letter efficiency and excellent constant RPM control as it operates out of fixed DC voltage. The proposed BLDC motor and the control electronics operate out of 24V DC through an SMPS having input AC which can vary from 90V to 270V. The operational block diagram of a BLDC motor is as follows:

Sir C.R.Reddy College Pharmaceutical Science ELURIJ-534007

With the replacement of existing ceiling fans with Super Fans the energy consumption is likely to reduce by 55% per fixture. Considering 100 fans being replaced with super-efficient BLDC fans, 3.50 kW can be saved. Considering the average operating hours to be 2000 and unit cost as Rs.

7.50, the calculations are as follows:

Total no. of fans in college

407

No. of fans considered for calculation

100 (First cycle of change)

Energy consumption per fan

70 W

Total energy consumption of fans

70W X 100 fans

7 kW

super-efficient BLDC fans energy consumption:

30 W

Savings from 70W to 30 W

55%

Total savings in fans energy consumption

55% of 7kW

3.5 kW

Savings per year

3.5 kW x 2000 hrs X Rs. 7.50/unit

Investment

Rs. 0.75 Lakhs

Rs. 2, 50,000

52 months

Annual emission reduction potential

6.00 T CO2

Charmaceutical Science FLURU-53A"

Install Air conditioners energy saver for spilt air conditioners:

Present status: As per the data obtained from CRRCPS team, the campus has majorly 1.5 TR units installed. There are 19 window and spilt air conditioners installed.

Recommendation:

We recommend installing "Airtron", an energy saver that can be installed at every individual unit of AC. The Airtron is the world's most advanced AC SAVER, with all the controls of a Precision AC. The Airtron's dual sensors reference the Room and Coil & Ambient Temp, and uses complex, multiple algorithms in a "closed-loop circuit" to reduce the Compressor Run-Time, to ensure the high savings while maintaining and displaying the Set temperature accurately. The Airtron is Programmable for geographical location and climate and adapts automatically to changes in season and ambient conditions.

This unique device has been developed on Patent-Published technology and approved by leading MNC'S, PSU'S and Govt. Departments. The Airtron is validated by EESL (Energy Efficiency Services Ltd.), Ministry of Power, Government of India, for 44% savings. The Airtron has been validated on all AC's- Inverters, 5 Star, Splits, Multi-Splits, Packages, ducts, Windows, Cassettes from 1.0 - 20.0 TR, LG Itd, Videocon Ltd, Tata Communications, L&T, Nestle, Ashok Leyland etc. The AIRTRON comes with a Remote for setting the Room Temperature, and in a Non-Flammable Polycarbonate Enclosure, with SMPS Power Supply, to tolerate w ide Voltage and Current fluctuations, Surges, Spikes and Sags.

In our case, Airtron installation can reduce the energy consumption of each fixture by 15% on a conservative basis. For a total energy consumption, for air conditioners, as 20 units per hour, 3 units per hour can be saved. It is recommended to install Airtron energy saver in a phase wise manner preferably in the batches of 10 units.

Saving Calculation: Considering the operating hours to be 2000 and unit cost as Rs 7.50/-.

Monetary annual savings : Rs 45,000/-

• Total investment : Rs 80,000/-

Payback period : 22 months (2 years)

Annual emission reduction potential: 4.92 MT CO2

PRINCIPAL
SIT C.R.Reddy College of
armaceutical Sciences
ELURU-534007

Major savings in energy through lighting fixtures can be achieved by replacing all the above existing fixtures with LED's meeting the required LUX levels. The LED's being less energy consuming while maintaining the equivalent lux is the more sustainable option. The replacement of lighting fixtures should be done as per failure replacement policy i.e. change the old fixture with LED when it fails

Advantages of LED

 Lower energy consumption: The energy consumption of LEDs is low when compared to the other conventional sources for the same amount of Lumen output.

Performance comparison of different type lights

Type of Lamp	Lumen/Watt	CRI	Life hours
HPSV lamps	90-120	Bad (22-25)	15,000-20,000
Metal Halide lamps	65-100	Good (65-90)	18,000
LED lamps	100-150	Very Good (>80)	10,000-12,000

- High S/P ratio: LEDs have higher scotopic/photopic ratio (S/P ratio). The eye has two primary light sensing cells called rods and cones cones function in day light and process visual information whereas rods function in night light. The cone dominated vision is called photopic and the rod dominated vision is called scotopic. The S/P ratio indicates the measure of light that excites rods compared to the light that excites cones. In office environments, illumination is more effective if the S/P ratio is high as it is under scotopic region. LEDs hence are ideally suited for these applications as they have a high S/P ratio.
- Longer life-time: LEDs have longer life time of around 1,00,000 hours. This is equivalent to 11 years of continuous operation or 22 years of 50% operation.
- **Faster switching:** LED lights reach its brightness instantly upon switching and can frequently be switched on/off without reducing the operational life expectancy.
- Greater durability and reliability: As LEDs are solid-state devices and uses semi-conductor
 material; they are sturdier than conventional sources that use filaments or glass. LEDs can
 also withstand shock, extreme temperatures and vibration as they don't have fragile
 materials as components.
- Good Colour Rendering Index (CRI): The colour rendering index, i.e., measure of a light sources' ability to show objects as perceived under sunlight is high for LEDs. The CRI of natural sunlight is 100 and LEDs of 80 and above.

Sir C.R.Reddy College of

ELURU-534007

LED offers more focused light and reduced glare. Moreover, it does not contain pollutants like mercury. LED technology is highly compatible for solar lighting as low-voltage power supply is enough for LED illumination.

Calculations are as follows:

Existing Lighting fixtures	36W
Existing power consumption(kW)	4.5kW (130lamps)
Proposed LED wattage (W)	15
LED power consumption (kW)	1.95kW
Energy saving (kW)	2.55kW
Opearting hours	2000

Annual monetary savings

Rs 38,250/-

Investment needed

Rs 90,000/-

Payback period

2.5 years

Annual Emission reduction potential:

4.18MT of CO2.

PRINCIPAL
Sir C.R.Reddy College of Charmaceutical Sciences
ELURU-534007

Conclusion

CRRCPS has initiated few energy efficiency activities in their campus. While REST Pvt Ltd appreciates the CRRCPS team for their efforts, we would like to emphasize that opportunity exists further reduce the energy consumption. Installation of renewable energy is to be given major focus. RESCO model can be adopted to install renewable energy without upfront capital investment. We in REST Pvt Ltd are sure that all the recommendations mentioned in the report will be implemented by CRRCPS team and the overall environmental performance of the campus will be improved.

PRINCIPAL
Sir C.R.Reddy College of
harmaceutical Sciences